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A method is given for calculating fault parameters in lattices built up of translationally equivalent layers 
with interactions between five subsequent layers, i.e. the relative rate of occurrence of five-layer struc- 
ture elements in such lattices. Based on a method outlined in part l, formulae are derived for the deter- 
mination of these characteristic values from the data of X-ray patterns with symmetrical or asymmetri- 
cal intensity distribution. The validity of the method is tested on model structures. 

In part I of the present work (Farkas-Jahnke, 1973) a 
method was described for the determination of fault 
parameters, or more precisely relative rates of occur- 
rence of structure elements in lattices, where the planes 
lying perpendicular to one crystallographic axis can 
be transferred into each other by one translation. From 
the intensities of diffuse lines along row lines whose 
Miller indices satisfy the inequality h -  k ~-3n, the rate 
of occurrence of structure elements consisting of three 
or four subsequent layers, [7]'2 or [7]a, can be deter- 
mined by using a direct method. 

Even by using these fault parameters a number of 
practical problems can be solved, for example in cases 
where the investigated physical property of the mate- 
rial depends on the hexagonality or on the relative rate 
of four-layer cubic stackings in the lattice, but for 
many other practical applications the determination 
of fault parameters taking into account interactions be- 
tween layers at greater distances would be desirable. 
Such a problem is the investigation of the course of 
phase transformations either during heat treatment 
(Farkas-Jahnke, 1971) or due to mechanical forces. 
Even the determination of the range of interaction in 
lattices would be possible by the determination of rate 
of occurrences of longer structure elements (Dorn- 
berger-Schiff, 1972). 

Because of the difficulties outlined in the next sec- 
tion, the determination process is somewhat difficult 
even for five-layer elements. In the present paper we 

give a solution of the problem; the concept applied can 
be extended later to determine fault parameters in 
longer structure elements. 

The calculation of [7]~ values for p > 3 

As we have shown in the case of periodic polytypes, 
[7]'p values, i.e. relative rates of occurrences of struc- 
ture elements consisting of p + 1 layers can be derived 
for any p using the recursion formulae and the equa- 
tions valid between n(m,p) and [7]~, values (Dornber- 
ger-Schiff & Farkas-Jahnke, 1970). In this case, how- 
ever, the values of the Patterson-like function, ~(m,p) 
and [7]p, could only be integers, according to their defi- 
nition. Although the number of equations is less 
than that of the unknown [7]p's, the integer nature of 
the quantities yielded a possibility of determining [7]p 
values even for p > 3, if the measurement of the inten- 
sities were accurate enough. 

Up to p = 3 it was not necessary, however, to make 
use of the integer nature of these quantities. The num- 
ber of equations (the recursion formulae and the rela- 
tions between zffm,p) and [7]p values together) is large 
enough to allow us to calculate [7]2 and [7]3 sets directly. 
As we have already shown (Farkas-Jahnke, 1973), up 
to this step the [711, = [7]p/N values can also be calculated 
directly (Table 2 in part I), the same type of equations 
being valid for this case as for periodic polytypes. 
But as we have seen these [7]~,'s are no longer integers; 
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their values, like the rd(m,p) values, are less than unity. 
Since the number of equations was not enough to de- 
mine the [y]~, values for p > 3, we had to evaluate a 
method of overcoming this difficulty. 

Relations between [T]4 values 

From the recursion formulae there are relations be- 
tween [y]; and [y]; values. This enables us to reduce the 
number of unknown [y]; quantities from 16 to 4, 
as shown in the first column in Table 1. 

Table 1. Relations between [Y]4 and [y]; values according 
to the recursion formulae 

A s y m m e t r i c a l  S y m m e t r i c a l  
r r ' ( m , p )  se t  n ' ( m , p )  se t  

[ 0 1 4 = [ 0 ] ; - [ 1 1 4  [ 0 1 4 = [ 0 ] ; - [ 1 ] ;  
[ 1 1 4 = [ ! ] 4  [114=[1]~  
[2]~=[214  [ 2 ] 4 = [ 2 ] 4  
[ 3 1 4 = [ 1 ] ] - - [ 2 ] ~  [ 3 1 4 = [ I ] ; - - [ 2 ] ~  
[ 4 ] 4 = [ 4 ] 4  [ 4 ] 4 = [ 4 ] 4  
[ 5 1 4 = [ 2 ] ; - - [ 4 ] ~  J514=[2]~- - [414  
[ 6 ] ~ = [ 3 ] ~ - - [ 7 1 4  [614=[1]~- - [114  
[714=[7]~  [714=[114 
[814=[1]~  [814=[1]~  
[914=[1]]-[114 [914=[I]]-[!]~ 

[ 1 0 ] ~ = [ 2 ] ~ - [ 2 ] ~  [ 1 0 1 4 = [ 2 ] ~ - [ 2 1 4  
[ 1 1 ] ~ = [ 3 ] ; - [ 1 ] ~ + [ 2 1 4  [1114=[214 
[1214=[4];--[414=[1]~--[414 [1214=L1];-[414 
[ 1 3 1 4 = [ 5 ] ; - [ 2 1 4 + [ 4 ] ~  [1314=[41~ 
[1414=[714 [ 1 4 ] i = [ l l l  
[1514=[7];-[714 [1514=[0];-[114 

(Note: In the following we shall abbreviate the bina- 
ries to their decimal equivalent form, as we have done 
when dealing with the structure determination of peri- 
odic polytypes. So, we shall write for example [0]~ for 
[0000]' and [4]4 for [0100]'.) 

It is clear from Table 1 that the [),]; values may be 
devided into two groups: [0]', [61', [7]', [8]', [9]', [14]', 
[15]' are related to [1]' (and [7]') and [3]', [5]', [10]', 
[1 I]', [12]', [13]' to [2]', and [4]' only. These two groups 
of unknown [y];'s will be referred to in the following 
as the 'first group'  and the 'second group' of [Y]4. 

As w;th the equations I(8)(equation 8 of part 1), 
giving the connexion between [~,]~ and 7F(m, 3) values, 

it is possible to write the same types of equation for 
p = 4, as follows: 

[014+ 217]; + [1 114 + [13]; = n ' ( -  1,4) (la) 

2[1]; + [2]; + [4]; + [15]; = rd(1,4) (lb) 

[3]; +[5]4 +[6]; +[9]; +[10]~ +[12]; = 7r'(0,4). (lc) 

(Remember that according to the recursion formulae 
[714=[1414, and [1];=[814.) 

To reduce further the number of unknown [y]; val- 
ues, we use the relations between them given in Table 1 
and substitute them into (la), (lb) and (1 c). They are 
now in the following form (using also Table 2 in part I): 

21714-[114 +[2]4 + [414 = 7r'( - 1,4)+ r F ( -  1 , 3 ) -  rd(1,2) 
-½7V(0 ,2) -½[rd(1 ,3) - rF( -1 ,3) ]  (2a) 

21114 + [2]; + [4]; -[714 = ~z'(1,4) + 7F(1,3) - ~z'(- 1,2) 
-½rd(0 ,2 ) -½[rd(1 ,3 ) -Tr ' ( -  1,3)] (2b) 

[114 + 2[2]; +[7]4 + 214]; = 7r'(1,3) + 7~'(- 1 , 3 ) -  2[~z'(1,3) 
- n ' ( -  1,3)]-~r '(0,4).  (2c) 

Solving this system of equations two relations are ob- 
tained: 

[7]4 = [l ]4- ½[TF(l, 4 ) -  re ' (-  1 ,4)] -  l[~z'(1,3) 
- z F ( - 1 , 3 ) ] - ½ [ z F ( l ,  2 ) - z F ( - l ,  2)] (3a) 

and 

[2]4 + [414 = ½{[2rF(1,4) + re ' ( -  1,4)] + [2~z'(- 1,3) 
+ rd(1,3)]-  [~z'(1,2) + 2~z'(- 1,2)]}-  ½rF(0,2)- [114. (3b) 

Having made use of our equations, in Table 2 we list 
the formulae gained so far for the determination of 
the [Y]4 values. It is clear that the [~,]; values are still 
dependent on at least two unknown quantities. There- 
fore a procedure was sought to overcome this difficulty. 

Determination of 1'/14 values 
from symmetrical rt'(m,p) sets 

If the intensity distributions along row-lines of oscilla- 
tion X-ray patterns with Miller indices (h-k)~:3n are 

Table 2. Formulae for determination of non-symmetrical [y]; values 

[0]4 = rF (1 ,2 )  + ½rF(0 ,2)  - ½[rF(1 ,3)  + 2 rF(  - 1,3)] --  [l  ]4 
[114=[114 
[214 = [2]4 
[3]4 = ½[rF(1,3)  + Err ' (  - 1,3)]  - ½rF(0 ,2)  - [2]4 
[4]4 = ½ [ ( 2 n ' ( 1 , 4 )  + ~z'( - 1 ,4))  + (2 rF(  - 1,3)  + 7r ' (1 ,3))  - ( r r ' ( 1 ,2 )  + 2 n ' (  - 1,2))]  - ½rF(0,2)  - [l ]4 - [2]4 
[5]4 = -,]-zF(0,2) - ½[rr'( - 1,4)  + 2rr ' (1 ,4)1  - [ rF(1 ,3 )  + rr'( - 1,3)]  + ~-[rr '(1,2) + 2rr ' (  - 1,2)] + [1 ]4 + [2]4 
[6]4 = 7r ' (1,3)  - ½7r'(0,2) + ½17r'(1,4) - rF( - 1,4)  + zr ' (1 ,2)  - rr'( - 1,2)] - [I ]4 
[7]4 = [1 ]4 --  ½[rr ' (1,4)  - ~ ' (  --  1,4)  + ~z'(1,3) - rr '(  --  1,3)  + r r ' (1 ,2 )  --  rF(  --  1,2)1 
[814=[t]4 
[9]4 = ½[~z'(1,3) + 2rr ' (  - -  1,3)]  - ½rF(0,2)  - [I]4 

[I 011-- rr'to,2)- ½[2rr'(l,3) + ~'(- 1,3)I- [211 
[1114 = ½ [ r r ' ( 1 , 3 ) -  r r ' ( -  1,3)]  + [211 
[1214 = ½[rF(1 ,2)  + 27F( - 1,2)] - ½127F(1,4) + rr '( - 1,4)]  + [114 + [2]4 
[13]4 = ½[(2rd(1,4) + rr'(- 1,4)) + (2rd(1,3) + rr'(- 1,3)) - (rr'(1,2) + 2n '(-  1,2))] - ½rr'(0,2) - [1 ]4- [214 
[14]4 = [114- ½[rr'(1,4) - 7r'( - 1,4) + rr'(1,3) - ~'( - 1,3) + rr'(1,2) - rr'( - 1,2)] 
[15]4 = ½[rr'(l,4) - 7V( - 1,4)] - ½[2rr'(- 1,3) + ~'(1,3)] + k[Zrr'(- 1,2) + rV(1,2)] + ½rV(0,2) - [114 
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symmetrical with respect to the equator, zr'(p, m) values 
calculated from these intensity values according to 

1 [ u=1 I S ( 0 , 1 , / ) ]  2 
zr'(m,p)= 3 LI + 2 Y. ~ 

1 = 0  

will be symmetrical in m,  i.e. z c ' ( m , p ) = r c ' ( - m , p )  for 
any p value. It is clear that in this case equations (2) 
become more simple, and from (3a) we now obtain 

[714=[114. (4) 
and from (3b) 

[1]; + [214 + [414 = zc'(1,4) re'(0, 3) 2 (5) 

[Note: Since the equation Z x ' ( m , p ) =  1 holds in gen- 
re 

erai, for symmetrical rc ' (m,p)  sets the relation 
1 t - - 1  ze'(- 1,p) +~zc (0, p) 

is valid. From this it follows that: 

zc'(1,p~) Zr'(O,pk) --Tr'(1,pk)-- ZC'(0,p~) 
2 2 - ' 1  

Although the form of the equations for the determina- 
tion of [7]4 values becomes more simple, as shown in 
the second column of Table 1, we did not essentially 
get any further, since the number of unknown quantities 
did not decrease. To overcome our difficulties, we have 
to consider a moderately large group of the faulte 
structures. 

Structure elements derived from each other by re- 
placing l 's by O's and vice versa in their binary nota- 
tion, should be called related structure elements. 

We tried to find a solution for structures where the 
relative rates of occurrence of related structure ele- 
ments are equal. 

This will certainly be valid for a number of struc- 
tures, since it only means that the probability of a 
fault caused by a slip of the lattice to the right is equal 
to the probability of a fault caused by the same slip 
in the opposite direction. 

So, for example, in the symmetrical case 

i.e. 
[0010]'=[I 101]' 

[2]4 symmetrical = [1314~ = [414~ (see Table 1). 

Hereafter if relations of type (6) are valid between cor- 
responding pairs of a [7]4 set, they will be termed sym- 
metrical, and denoted by a n ' s '  in their index, i.e. 
[714s is one of a set of [7]4 values where the relative rates 
of related structure elements is equal. 

From equation (5) and using equation (6) a relation 
between [214~ and [114~ may be derived: 

[214~=½[ zc'(1,4)- re'(0,3) 
2 ] -[1]as 

and so the relations in Table 2 may be transformed into 
formulae, where all [714~ values depend on just one un- 
known quantity, [114~. These relations are listed in 
Table 3. 

Table 3. [7],~,~ values  

[0]Z = ½~'(0,3)- [Ills 
B]Z=[ I ]L  
[2]~ = ½zr'(1,4) - ¼7r'(0,3) - ½[1 ];s 
[3]~, = re'( 1,2) - ¼~z'(0,3) - ½-n'(1,4) + ½[I ]~s 
[4]~s = [2]~s 
[5];s = re'(0,2) - ~zr'(1,3) + ¼rc'(0,4) + ½[1 ]4, 
[61~ = ~'(1,2) - ½zc'(0,3) - [1]~ 
[7]~ = [ 1 ]~s 

The number of unknown quantities on the right 
hand side of the equations now decreases to one. So, 
although it is still not possible to determine exactly 
the values of the [7];~'s, it is at least possible to in- 
dicate their maximum and minimum values as given 
in Table 4. {The limits of the unknown quantities are 
given by the recursion formulae 

[ala2 . . .  ap]=[ala2  . . .  apO]+[ala2 . . .  avl]  

[ala2 . . .  av]=[Oala2 . . .  a v ] + [ l a l a 2  . . .  ap] 

where al denotes 1 or 0 [Dornberger-Schiff & Farkas- 
Jahnke, 1970, Table 3(b)], and by the relations between 
~z(m,p) values and the sum of rate of occurrences of 
structure elements with digital sum, K =  3 - p - m  (mod 
3). For example see equations (7) and (8) in part I, or 
Table 1 and equation ( l a ,  b , e )  in this work}. 

Values lying within the intervals allowed for each 
[714 give the possible solutions of the problem. If we 
choose for any of the unknown quantities a value of 
its allowed interval, a set of [7]4 values, all lying within 
their allowed interval, follows. Changing the value of 
the chosen unknown (for example that of [114) linearly, 
the values of the other [7]4 quantities also change linearly. 
This means, if we choose for M4s the mean value of 
[114~ max and [114s mi,, i.e. the middle point of its al- 
lowed interval, the [7];~m set derived using this [1]s4 mean 
consists of the middle points of each [7]as interval. 

[714sm = [~214s m a x  "[- [?'l;s m i n  

2 

With the described procedure we obtain a [7]4 set which 
may be regarded as a probable solution of our problem. 

(6) In the following we shall characterize the structures 
with 'symmetrical' stacking faults by these mean 
[714 sm values. 

It is clear that this set of mean values will be the more 
characteristic of the structure the shorter the intervals 
for the allowed [7];s values, and the greater the ac- 
curacy of measurement of intensity values on the X-ray 
pattern. In practice it quite often happens that the 
calculation of the minimum of one or other [7]4 yields 
a negative value. Since according to their definition 

(7) the [714's can have only positive values, this calculated 
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l im i t  s h o u l d  be i nc rea sed  to  0, a n d  the  va lues  o f  all  
o t h e r  [714~ h a v e  to  be c h a n g e d  a p p r o p r i a t e l y .  Th i s  cor rec-  
t i on  ce r t a in ly  s h o r t e n s  the  in te rva l ,  a n d  a l lows  the  pos-  
s ib i l i ty  o f  i nc reas ing  the  a c c u r a c y  in a p p r o a c h i n g  the  
real  f au l t  p a r a m e t e r s  w h e n  r ep lac ing  t h e m  by  the  m e a n  
va lues  o f  the  [)']4 in te rva ls .  

T h u s  we have  so lved  o u r  p r o b l e m  for  the  s imples t  
ease w h e n  

(1) the  n'(m,p) sets are  s y m m e t r i c a l  in  m, a n d  
(2) the  re la t ive  ra tes  o f  o c c u r r e n c e  o f  r e l a t ed  s t ruc tu re  

e l emen t s  a re  equa l .  

F o r  such  s t ruc tu res  we are  ab le  to ca lcu la te  cha rac -  
ter is t ic  p a r a m e t e r s ,  w h i c h  are  d i rec t ly  de r ived  f r o m  
m e a s u r e d  in tens i t i es  a n d  are  t he r e fo r e  free f r o m  the  
e r ro r s  o f  ' t r i a l  a n d  e r ro r '  m e t h o d s .  

R e l a t i o n  b e t w e e n  a s y m m e t r i c a l  1~/1~ a n d  s y m m e t r i c a l  

[714~ v a l u e s  

T h e  c o n s i d e r a t i o n s  o u t l i n e d  in the  t h i r d  c h a p t e r  re- 
su l ted  in  e q u a t i o n s  (given in T a b l e  2) va l id  b e t w e e n  
a s y m m e t r i c a l  [7]4 values .  O n  the  o t h e r  h a n d ,  a c c o r d i n g  
to  the  p r e v i o u s  sec t ion  we can  f ind a s o l u t i o n  to  
the  p r o b l e m  in  a specia l  case,  s t a r t i ng  f r o m  a sym-  
me t r i ca l  7~'(m,p) set. I f  we c o u l d  der ive  a sym-  
me t r i ca l  7~'(m,p) set f r o m  the  a s y m m e t r i c a l  one  we 
c o u l d  use these  resul ts  as an  i n t e r m e d i a t e  s tep in de- 
r iv ing  the  [714 set in  the  a s y m m e t r i c a l  case. This ,  h o w -  

ever,  c an  be ca r r i ed  ou t  by  the  f o l l o w i n g  p r o c e d u r e .  
I t  is c lear  t h a t  

~r'(1,p) + r~ ' ( -  1,p) + z~'(0,p) = 1 

is gene ra l ly  va l id ,  fo r  s y m m e t r i c a l  a n d  a lso  a s y m m e t -  
r ical  zr(m,p) sets. F o r  a s y m m e t r i c a l  set, w i th  the  s ame  
~r'(0,p) va lues ,  

~'(0,p) 
n ' ( 1 , p ) , +  2 - ½  

c lea r ly  ho lds .  F r o m  these  it fo l lows  t h a t  

n ' ( 1 , p ) +  n ' ( -  1,p) = n ' ( 1 , p ) ~ .  
2 

(8) 

T h i s  m e a n s  t h a t  by  c a l c u l a t i n g  the  m e a n  va lue  o f  
z~'(1,p) a n d  ~z ' ( -  1,p) a s y m m e t r i c a l  n'(m,p) set m a y  be  
de r ived  for  each  a s y m m e t r i c a l  set. U s i n g  these  sym-  
me t r i z ed  zC(m,p) va lues  as a s t a r t i ng  p o i n t  fo r  the  p roce -  
du re  ske t ched  in the  p r ev ious  sec t ion ,  we are  ab le  to  
ca l cu la t e  a [?];~m set. 

N o w  we have  to  c o n s i d e r  h o w  to  o b t a i n  r e l a t i ons  
by  the  a id  o f  w h i c h  it  will  be poss ib le  to  ca l cu la t e  the  
cha rac t e r i s t i c  [7]~ va lues  f r o m  this  [7]~ set. 

T o  der ive  a r e l a t ion  b e t w e e n  [1]; a n d  [1]~, w h i c h  
w o u l d  be o f  g rea tes t  use to  us, we have  to  s t a r t  
f r o m  e q u a t i o n s  ( l a )  o r  ( lb) .  T h e n  o u r  first s tep m u s t  
be to  d e t e r m i n e  the  r e l a t i on  be tween  [2]4+[4]4 a n d  
[2]4,. F r o m  the  r ecu r s ion  f o r m u l a e  we o b t a i n  

[2]~ + [4]~ = [1114 + [1314 -- z[n ' (1,  3) - n ' ( -  1,3)] (9) 

T a b l e  4. Limits of symmetrical [Y]4, values 

Valid if n'(1,4) < n'(1,2) 
½n'(0,3) > [0]~ > ~z'(0,3) - n'(1,4) 
0 < [1]~ < ~'(1,4) - ½~z'(0,3) 
½n'(1,4)- ¼n'(0,3) > [2]~ > 0 
n'(1,2) -- ½n'(1,4) - ¼n'(0,3 ) < [3]~s < n'(1,2) - ½re'(0,3) 
[2]~ . . . .  > [41~ > [21~ m,, 
n'(0,2) - ½n'(1,3) + ¼n'(0,4 ) < [5]~, < n'(0,2) - n'(1,3) 
rC(1,2) - ½zg(0,3) > [6]~ > re'( 1,2) - rr'( 1,4) 
[1]~ m~n < [7]~ < [1],~ . . . .  

Valid if ~r'(1,2) < rr'(1,4) 
½~'(0,3) > [0]~s > ~'(0,3) -- n'(1,2) 
0 < [I]~ < rr'(1,2) - ½n'(0,3) 
½rr'(1,4) - ¼n'(0,3) > [2]~ > ½[zr'(1,4) - zr'(1,2)] 
n'(1,2) - ½~r'(1,4) - ¼n'(0,3)  < [3]~  < ½[3 r~'(1,2) - zr'(0,3) - rr'(1,4)] 
[2]~ .... > [4]~ > [2]~ mln 
n'(0,2) - ~ ' (1 ,3)  + ¼n'(0,4) < [5]~ < ½n'(0,2) - ~z'(1,3) + ¼[n'(0,2) + n'(0,4)] 
~ ' (1 ,2)-  ½~'(0,3) > [6]~ > 0 
[1],~s m~° < [71L < [l]~ . . . .  

T a b l e  5. Values of [714 belonging to the first group in the case of asymmetrical n(m,p) set 

[0]~ = ½n'(0,3)  + ½[n'(1,2) - re'( - 1,2)1 - ~ [ ~ r  (1 ,4)  - rc ( - 1,4)1 - [1 ]~s 
l l ]~ =,[n '(1,4) - zr'( - 1,4)] + k[Tr'(1,3) - n'( - 1,3)] +-~ [rG 1,2) - n'( - 1,2)] + [1 l~ 
[6]~ = k[rr'(1,4) --; 1;'( - 1,4)] --hn'(1,3) - n'( - 1,3)1 + ,[n'(1,2) - re'( - 1,2)] + n'(1,3) - ½~z'(0,2) - [1]~ 
[71~ = l i l t s -  }In (1,4) - rr'( - 1,4)1 -}[zr'(1,3) - n ( -  1,3)1- }[n'(1,2) - re '(-  1,2)1 
[81~=[11~ 
[9]4 = - ~[n (1,4) - n ' ( -  1,4)] + ~[n (1,3) - n ( - 1,3)] - ~-[n'(1,2) - n'( - 1,2)] + n'( - 1,3) - ~-n'(O,2) - [1 ]~ 

[14]~=[7]~ 
[15]~ = ~[~z'(1,4) - n'( - 1,4)] - }[n'(1,2) - n'( - 1,2)1 + ½n'(0,3) - [1 ]4~ 
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a n d  f r o m  t h e  d e f i n i t i o n  o f  t h e  [y]~, v a l u e  

[2]~+ [1314 = 2 1 2 ] ~  
a n d  

[4]4 + [1114 = 21214~. 

F r o m  t h e s e  it f o l l o w s  t h a t  

(10) 

[214 + [414 = 21214~- ½[~z ' (1 ,3) -  zd( - 1 , 3 ) ] .  (11) 

T h i s  is t h e  v e r y  r e l a t i o n  r e q m r e d .  
U s i n g  e q u a t i o n  ( l l )  a n d  t h e  r e l a t i o n  fo r  [1514 in  

T a b l e  2, w e  o b t a i n  f r o m  ( l b )  

[1 ]4 = ~ ; [ r t ' ( 1 ,4 ) -  z d ( -  1,4)] + - ~ [ z c ' ( 1 , 3 ) -  z ~ ' ( -  1,3)] 

+ ~ [ ~ z ' ( 1 , 2 ) - z d ( -  1 ,2 ) ]+[114~.  (12) 

T h u s  al l  t h e s e  [y]~ v a l u e s  in T a b l e  2, d e p e n d e n t  o n l y  o n  
[114~, c a n  n o w  be  s i m p l y  c a l c u l a t e d  f r o m  t h e  a l r e a d y  
k n o w n  [1]~,, v a l u e  u s i n g  e q u a t i o n  (12). T h e  a p p r o p r i a t e  
f o r m u l a e  a r e  l i s t ed  in T a b l e  5. 

F o r  t h e  s e c o n d  g r o u p  o f  [y]j va lue s ,  d e p e n d e n t  n o t  
o n l y  o n  [114 b u t  a l so  o n  [2]4, w e  h a v e  t o  r e p e a t  t h e  
p r o c e d u r e  u s e d  w h e n  d e r i v i n g  t h e  [}']4~ va lues .  E i t h e r  
t he  r e c u r s i o n  f o r m u l a e  o r  e q u a t i o n  (11) n o w  g ives  
t h e  n e c e s s a r y  l i m i t i n g  c o n d i t i o n s  fo r  t h e s e  [Y]4 
v a l u e s ;  in a g i v e n  case  w e  h a v e  to  u se  t h e  o n e  t h a t  
c o r r e s p o n d s  to  s t r i c t e r  l imi t s ,  i.e. s h o r t e r  i n t e r v a l s  f o r  
t h e  a l l o w e d  [y]~ va lue s .  N o w  w e  sha l l  a g a i n  a c c e p t  as  
[y]~ m e a n  v a l u e s  t h e  m i d d l e  p o i n t  o f  t h e s e  i n t e rva l s .  

S ince  t h e  f o r m u l a e  in  T a b l e  2 c o n t a i n  [114 ( w h i c h  
is a l r e a d y  d e t e r m i n e d  a t  th i s  p o i n t  o f  t h e  p r o c e d u r e )  
a n d  [2]4 as u n k n o w n  q u a n t i t i e s ,  it  s e e m s  su f f i c i en t  
to  c a l c u l a t e  t he  l im i t s  o n l y  fo r  [2]4, a n d  s u b s t i t u t e  t h e  
m e a n  v a l u e  o f  [2]4 m a x  a n d  [2]4 r a i n  i n t o  t h e  f o r m u l a e  o f  
t h e  T a b l e .  But ,  as  w e  h a v e  a l r e a d y  p o i n t e d  o u t  in  t h e  
p r e v i o u s  s e c t i o n ,  it m a y  h a p p e n  t h a t  t h e  c a l c u l a t e d  
l i m i t s  fo r  o n e  o r  o t h e r  [Y]4 a re  less  t h a n  ze ro .  T h i s  
a g a i n  p e r m i t s  us  to  d e c r e a s e  t he  a l l o w e d  i n t e r v a l  f o r  
all [y]a'S o f  t h e  g r o u p ,  a n d  c o n s e q u e n t l y  to  i n c r e a s e  
t h e  a c c u r a c y  in c h a r a c t e r i z i n g  t h e  s t r u c t u r e  by  t h e  

T a b l e  6. Limits of  asymmetrical [y]~ values belonging to the second group 

From (a) and (b) the one corresponding to the lower 
(a) 

0 < [2]4 < 
][rd(1,3) + 2rd( - 1,3)] - ½n'(0,2) > [3]4 > 
2[2]45 - :}[n'(1,3) -- rd( - 1,3)] > [4]4 > 
n'(0,2) - ½[n'(1,3) + 2n'( - 1,3)] - 21214~ < [5]4 < 
~z'(0,2) - }[2~z'(1,3) + zt'( - 1,3)] > [10]4 > 
½[zd(1,3) - ~z' ( -  1,3)] < [1114 < 
k[n'( -- 1,3) + 2zd(1,3)] -- ½~z'(0,2) - 21214~ < [12]4 < 
212]~ > [1314 > 

value of  [2]4 m a x  is to be used. 

½Dz'(1,3) + 2n'( - 1,3)] - ½zd(0,2) 
0 
2[2]45 + ½rd(0,2) - ½[rd( - 1,3) + 2rd(1,3)] 
½rd(0,2) - 21214~ 
}[zr'(0,2)] -- [zd(1,3) + rd( -- 1,3)] 
~s[~z'( -- 1,3) + 2rd(1,3)] -- ½n'(0,2) 
zd(1,3) + n'( - 1,3) - rd(0,2) - 21214~ 
21214~ + ½zd(0,2) - ~-[n'(1,3) + 2rd( - 1,3)] 

(b) 
0 < [2]4 < 21214s - }[~z'(1,3) - ~'( - 1,3)1 
][n'(1,3) + 2n'( - 1,3)1 - ½n'(0,2) > [3]4 > ½[2zd(1,3) + re'( - 1,3)1 - ½zd(0,2) - 21214~ 
2[2]45 - ~-[zd(1,3) - ~z'( - 1,3)] > [4]4 > 0 
zd(0,2) - ½[rd(1,3) + 2 r d ( -  1 ,3)]-  21214s < [5]4 < ~z'(0,2)- ~[rc'(- 1,3) + 2rd(1,3)] 
n'(0,2) - ½12~z'(1,3) + rd( - 1,3)] > [1014 > rd(0,2) - ½[2rd( - 1,3) + rd(1,3)] - 2[2]4, 
}[rd(1,3)-  n ' ( -  1,3)] < [1114 < 21214~ 
~t[rd(- 1,3) + 2 n ' ( 1 , 3 ) ] -  ½rd(O,2)- 21214~ < [1214 < k[rd(1,3) + 2 r d ( -  1 ,3)]-  ½n'(0,2) 
21214s > [13]4 > ~[rd(1,3) - rd( - 1,3)] 

T a b l e  7. Limits of  asymmetrical [Y]4 values belonging to the second group, i f  the zd (m,p )  set is symmetrical 

From (a) and (b) the one corresponding to the lower value of [2]4 max is to be used. 
(a) 

0 < [214 < re'(1,3) - {rr'(0,2) 
zr '(1,3)- ½rd(0,2) > [3]4 > 0 
rd(1,3) - ½rd(0,4) - [1 ]45 > [4]4 > ½n'(0,2) - ½n'(0,4) - [1 ]4~ 
zd(0,2) + ½rd(0,4)- 2n'(1,3) + [114~ < [5]4 < ½n'(0,2) + ½n'(0,4) - zd(1,3) + [114, 

3 t rd(0,2) - ~z'(1,3) > [1014 > ~n (0,2) -- 2rd(l,3) 
0 < [1114 < zd(1,3) - ½rd(0,2) 
½n'(0,4) - ½rd(0,2) + [114~ < [1214 < ½~'(0,4)-  rd(0,2) + rd(1,3) + [114~ 
n'(1,3) - ½n'(0,4)-  [114~ > [1314 > ½~z'(0,2) - ½~z'(0,4) - [114~ 
(b) 

0 < [2]4 < zd(1,3) - ½zd(0,4) - [114, 
zd(1,3)-  ½n'(0,2) > [3]4 > ½zd(0,4) - ½rd(0,2) + [ 1 ]4s 
n ' ( l ,3)  - ½zd(0,4) - 1114~ > [4]4 > 0 
zd(0,2) + ½n'(0,4) - 2rd(1,3) + [114~ < [5]4 < zd(0,2) - re'(1,3) 
zd(0,2) - zd(1,3) > [1014 > zd(0,2) + ½rd(0,4) - 2rd(1,3) + [114, 
0 < [1114 < zd(1,3) -- ½rd(0,4) -- [ 1 ]4~ 
½rr'(0,4) -- ½n'(0,2) + [1 ]4, < [12]4 < zg(1,3) -- ½rd(0,2) 
~z'(1,3) -- ½zr'(0,4) - [114, > [13]4 > 0 
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middle value of these intervals. So in practice it is 
worth while to calculate the limits for all [714 values ac- 
cording to Table 6 and make corrections if any of 
them happen to be less than zero, and to calculate the 
final [714 mean values from Table 2 using the mean 
value of the corrected [2]4 r a i n  and [2]4 max"  

Thus we have solved our problem for the general 
case and are able to determine characteristic fault par- 
ameters, for any structure containing stacking faults, 
in a direct way from the diffracted intensity distribu- 
tion measured on the X-ray pattern of the crystal. 

Case of symmetrical n'(m,p)-asymmetrieal 1714 sets 

Having solved our problem in general, we now have 
to deal with one special case. In the fourth chapter 
where we described the procedure to be followed in 
the case of symmetrical n'(m,p) sets, we had to assume 
the [?]4 set was also symmetrical. But in reality we can 
not be sure about that, at least not in cases where in 
the parent polytype structure the cyclicity was larger 
than zero. 

Our method outlined in the previous section for 
determination of the [714 set in the case of a symmet- 
rical n'(m,p) set may surely also be adopted for that 
case. From the symmetrical nature of n'(m,p) it fol- 
lows that n'(1 ,p )=  n ' ( -  1,p), and according to equation 
( l l )  

[2]4 + [4]4 = 2[214s. (13) 

From equation (5), 

[114=n,(1,4) - n'(0,3).-21214s 
2 

(14) 

and using equation (7) 

[114=[114s • 

The value of [114 and consequently the values of all 
other [7]4 dependent only on [114 (e.g. [0]4, [114, [6]4, 
[7]4, [8]4, [9]4, [1414, [1514) are equal to the symmetrical 
[?]4s values. 

Now we have to consider whether the [?]4 values 
belonging to the second group will also be symmetrical. 
In equation (6) we have shown that if the [7]4 set is sym- 
metrical, [2]4 = [4]4. It is easy to show that the converse is 
true: if [2]4 = [4]4, the whole set of [?]4 is symmetrical. As 
the n'(m,p) set is symmetrical, it follows that the [Y]3 
set is also symmetrical, and therefore from the re- 
cursion formulae for [7]4: 

[214=[1114 
[1314= [4]4 

and 
[214- [4]4 = [12]4 -[3]4 = [5]4 - [10]4. 

This means, if [2]4 = [4]4, that a symmetrical set of [?]4 
follows from the symmetrical n'(m,p) set. 

It remains to be clarified on what conditions the 
equality between [2]4 and [4]4 will be satisfied. The pos- 
sible limiting values for [Y]4 of the second group are 
easily derived from Table 6 assuming n ' (m,p)=  
n'(-m,p) and using equation (7), as seen in Table 7. 
Again, as in the case of Table 6, either the second or 
the third column of equations is valid, together with 
the first, depending on which of them gives the stricter 
limit for [2]4 max"  

The [?]4 values of this group can be calculated in a 
manner similar to the procedure followed in the case 
of asymmetrical n'(m,p) sets, i.e. as mean values of 
[ 7 ] 4  m a x  and [7]4 m | n "  

From Table 7 it is obvious that using this definition 
for [?]4 the set may be symmetrical only if the actual 
upper limit of [2]4 is given by column (b) of the Table. 
In this case the condition [2]4 = [4]4 is satisfied, whereas 
if the limiting condition is given by column (a) it is not. 

(a) A 48-layer polytype model 
Table 8. Polytype models with n'(m,p) values 

111010000101111011100101110111110011010011101101 

(b) A 96-layer model made ffomthe above 48-layer stacking introducing one fault between two 48-layer regions: 

111010000101111011100101110111110011010011101100 
111010000101111011100101110111110011010011101111 

(c) n'(m,p) values corresponding to the above stackings 

a b 
p m -1  0 +1 -1  0 
1 0"375 0 0.625 0.375 0 
2 0"375 0.5 0.125 0-385 0.48 
3 0"25 0"25 0"5 0-27 0.27 
4 0"52 0"27 0.21 0.48 0.29 

(d) n'(m,p) values calculated from the artificially faulted structuies based on stacking 

a b 
p m -1  0 +1 -1  0 
1 0.42 - 0.02 0.60 0.43 - 0-02 
2 0.32 0.53 0.15 0.31 0.52 
3 0.30 0-20 0.50 0.34 0.23 
4 0"48 0"36 0"16 0"41 0.37 

+1 
0"625 
0"135 
0"47 
0-23 

+1 
0"59 
0"17 
0-43 
0"22 
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This condition may be given in the form of two in- 
equalities: [214 mea,, = [4]4 me.n, if 

or 

1 ! n'(1,4) + ¼n'(0, 3) - 2 n  (1,2) < n'(1,2) < n '( l ,  4) ,  

½n'(1,4) + ¼n'(0, 3) < n'(1,2) > n ' (1,4) .  

Test of the validity of the method 

The direct method for characterizing structures con- 
taining stacking faults works with some assumptions 
which seemed to be justified; nevertheless it would be 
desirable to estimate the errors induced by them. 

It is not possible to test the validity of the method 
on a real structure, since it goes without saying that 
the real fault parameters of the structure are not known. 
In the fifth section of part I (Farkas-Jahnke, 1973) we 
have shown that the [y]~ values deduced by our method 
are equal to those obtained by using one of the in- 
direct methods, i.e. that of Jagodzinski. 

For  p = 4  such comparison is not yet possible, and 
we therefore tried our method on an artificially made 
structure according to the following: structure models 
of pure polytypes were made by determining their 
stacking sequence by throwing dice. The period lengths 
of the stackings were 24, 48 and 96 in one group of mod- 
els and 102 in others. In the latter case the three models 
have structures independent of each other; in the first 
case each group was based on a 24-layer structure. The 
48-1ayer structure was built up from two 24-layer re- 

gions of the same stacking with one stacking fault be- 
tween them, and the 96-layer structure was built up sim- 
larly from 48-1ayer regions. Intensities of reflexions (i.e. 
structure-factor squared values) with Miller indices 01l 
were calculated for these models according to the clas- 
sical formula. 

In this way we obtained a set of calculated inten- 
sities for each artificially made model structure. Since 
the models were pure polytypes, the intensities were 
different from zero only at discrete points on the 01l 
row-line. Next we connected these intensity maxima 
by a continuous line, thus drawing a model for the in- 
tensity distribution that would be diffracted from a 
lattice, which, although faulted, was based on the poly- 
type structure of the initial model. 

To arrive closer at the real situation we made a 
further correction. In practice, if we record an X-ray 
pattern from a region of a real crystal (for this 
purpose we use an X-ray beam some 0.1 mm wide) 
even the reflexions from a pure polytype lattice will be 
of definite breadth. Therefore we represented the inten- 
sity maxima by Gaussian curves, whose centre was 
placed at the site of the reflexion and whose height at 
that point was equal to the value of the calculated in- 
tensity. The breadths of the Gaussians were determined 
by measuring the width of the intensity distributions 
of family reflexions (i.e. reflexions with Miller in- 
dices h - k  = 3n) on a number of X-ray patterns. 

We then superimposed the continuous line men- 
tioned above on these Gaussian intensity distribu- 

Table 9. [7]a and [7]4 values 
Calculated by the present method for 

Determined from the stackings of the 

48-1aye~ and 96-layer 
polytype models 

[y]; 
[000l' 0.042 0.042 
[001]' 0.083 0.094 
[010]' 0.083 0.083 
[011]' 0.167 0-156 
[100]' 0.083 0.094 
[101]' 0"167 0"146 
[110]" 0"167 0"156 
[111]' 0"208 0"229 

the artificially faulted structures 
based on the 

48-layer and 96-layer 
polytype models 

[Y]; 
0-057 0"044 
0"094 0.080 
0"108 0"116 
0"157 0"158 
0"094 0"080 
0-172 0"194 
0"157 0-158 
0-161 0"170 

[0000]' 0"020 0"021 
[0001]" 0"020 0"021 
[0010]' 0"042 0"042 
lO011 ]' 0.042 0.052 
[0100]' 0"042 0"042 
[0101]' 0"042 0-042 
[0110]' 0"042 0"031 
[0111]' 0"125 0"125 
[1000]' 0"020 0"021 
ll001]' 0-063 0"072 
[1010]' 0"042 0"042 
[1011]" 0"125 0"104 
[ 1100]" 0"042 0"052 
[1101]' 0"125 0"104 
[1110]' 0"125 0-125 
[1111]' 0"083 0"104 

lY]~ 
0.024 0.032 
0-024 0.028 
0.028 0.045 
0.075 0-066 
0.028 0.045 
0"075 0.075 
0.034 0.028 
0"128 0.112 
0.024 0.028 
0"079 0.083 
0.075 0.075 
0.087 0-073 
0.075 0.066 
0.087 0.073 
0.128 0.112 
0.029 0.059 



420 M E T H O D  F O R  C H A R A C T E R I Z I N G  S T R U C T U R E S  WITH S T A C K I N G  F A U L T S .  II 

tions, and using the adequate values of the resulting 
intensity curves zc'(m,p) sets were calculated using the 
procedure given in part I. Some sets of these values 
based on a 48 and a 96-layer polytype are given in 
Table 8. 

It can be seen in the first two sets of rc'(m,p) values 
[Table 8(c)] that by introducing even one single stack- 
ing fault between two identical 48-layer regions when 
building up the 96-layer polytype model, the values in 
the zc' sets observably changed. Thus we could expect 
a more considerable change in the z~' values calculated 
from the intensity distribution of the artificially made 
faulted structures than obtained in the case described 
above;nevertheless they are supposed to approach the 
values of the zc'(m,p) sets of pure model polytypes. 

As Table 8 proves there is really a considerable dif- 
ference between corresponding values of rc'(m,p) in 
Table 8(c) and (d), but the mean value of the differ- 
ence does not exceed 16 %. 

Consequently, since the determination of [9,]~ and 
[7]4 values is based on the adequate rc'(m,p) sets, we 
can expect that if our method for their determination 
is correct, the [?]'p values thus determined by 
it for the faulted structure will not greatly differ from 
the [?]'p values of their parent polytype models. The 
latter can be determined simply by counting the iden- 
tical structure elements in the stacking of the model 
polytypes. 

Strictly speaking, while all formulae for the deter- 
mination of [7]~ and [7]4 values are linear relations of 
n'(m,p)'s, the difference between related [?]'p pairs may 
not exceed the mean value of the difference in rc'(m,p) 
values multiplied by the number of rc's in the corre- 
sponding formula. Since the mean value of the differ- 
ence is not greater then 30 % [about twice the mean 
difference of the rc'(m,p) values] derived from the data 
of Table 9, where [y]~ and [7']4 sets calculated from the 
zc'(m,p) sets of the faulted models are given, together 
with the [7]~, values of the pure polytypes, the error in- 
duced by the assumptions is within the limits of the 
experimental error. 

C o n c l u s i o n  

Starting from the direct method for determining the 
stacking sequence of polytypes with periodic structure 
a new procedure has been worked out to obtain values 
characteristic of lattices with stacking faults. These 
characteristic values are the relative rates of occurrence 
of structure elements ([712, [Y]~ and [Y]4) consisting of 
three, four and five subsequent layers of the lattice. 

As starting values a ~'(m,p) set calculated from the 
measured intensities on the X-ray pattern is needed. 
Formulae for the determination of [y]~ and [y]~ are 
given in part I (Farkas-Jahnke, 1973). In this paper 
the method for the determination of [Y]4 values has 
been outlined. 

The procedure may be summarized by the following. 
There are two types of starting values: 

(a)  The set of z~'(m,p) values is symmetrical in m 

[rg(m,p)= rc'(- m,p)] 
or 

(b) the set of z~'(m,p) values is asymmetrical. 

For (a) 
(1) Assuming that [7]4 values are also symmetrical, 

we calculate the limits for their possible values accord- 
ing to the formulae in Table 4. (If any of the limiting 
values turn out to be less than zero, corrections have 
to be made until all values become greater than or 
equal to 0.) 

(2) By calculating the mean value of [?']4 max and 
[7]4 min we have a set of [714~ values ([)']4~ mean)- 

For (b) 
(1) From the set of asymmetrical zc'(m,p)'s a sym- 

metrical rc'(m,p) set has to be calculated according to 
equation (8). 

(2) By the procedure described for case (a) a set of 
[)']4s values is obtained. 

(3) From these [)']4s values the asymmetrical [7]4 
values belonging to the first group (i.e. [0]4, [114, [6]4, 
[7]4, [8]4, [9]4, [1414, [1514) are calculated by the for- 
mulae given in Table 5. 

(4) For [714's belonging to the second group limits 
can only be determined by using the [)']4s values. After 
having determined these limits by using the equations 
in Table 6, the mean values of [)']4 max and [~']4 rata give 
the missing group of the [?']4 values, i.e. [2]4, [3]4, [4]4, 
[5]4, [1014, [1114, [124, [1314. 

Supplement to case (a) 
(3) If the 7g(rn,p) set is symmetrical, the first group 

of [714's, dependent only on [114 is symmetrical also. 
(4) The group of [7]4 depending also on [2]4 (the 

second group of [7]4 values) is not necessarily symmet- 
rical, only if [2]4 = [4]4. The conditions for this case are 
given in Table 8. 

By having determined all [7]4 values, we obtain in fact 
fault parameters of the lattice, taking into account in- 
teractions between five successive layers. 

References 

DORNBERGER-SCHIFF, K. t~ FARKAS-JAHNKE, M. (1970). 
Acta Cryst. A26, 24-34. 

DORNBERGER-SCHIFF, K. (1972). Kristallografiya, 16, 1247- 
1252. 

FARKAS-JAHNKE, M. (1971). First European Conference on 
the Physics of Condensed Matter, Abstract No. 65. 

FARKAS-JAHNKE, M. (1973). Acta Cryst. B29, 407-413. 


